Mortgage & Loan Payment Calculator

Calculate your monthly payments and amortization schedule for any mortgage or loan.
The amount borrowed.

Financial Summary

--
Monthly Payment
--
Total Interest Paid
--
Total Paid (Principal + Interest)
MonthPaymentInterestPrincipalBalance

Amortization and Total Interest Paid Analysis

The **Mortgage & Loan Calculator** is based on the standard **loan payment** formula to determine your fixed monthly obligations. This tool is crucial for anyone taking out a **home loan**, **car loan**, or any long-term debt, as it reveals the true cost of borrowing through **total interest paid** and provides a detailed **amortization schedule**.

Calculating Monthly Payment (P & I)

The calculation for the **monthly payment** (Principal and Interest, or P&I) uses the following formula, where $i$ is the monthly interest rate ($\text{annual rate}/12$) and $n$ is the total number of payments ($\text{term} \times 12$):

$$\text{M} = \text{P} \times \frac{i(1+i)^n}{(1+i)^n - 1}$$

The **amortization schedule** tracks how much of your **monthly payment** goes toward **interest** versus reducing the **loan principal**. In the early years, most of the payment covers interest, with more going to principal as the loan matures.

The Impact of Extra Payments

A key feature of the **loan payment calculator** is assessing the impact of **extra monthly payments**. Even a small extra payment applied directly to the **loan principal** can dramatically reduce the total loan term and the **total interest paid**. Use the **amortization schedule** to visualize how aggressively paying down your **mortgage or loan** can save you thousands and accelerate your financial freedom.

Loan Calculator FAQs

What is the Amortization Schedule?

The **amortization schedule** is a detailed table generated by the **loan payment calculator** that breaks down every **monthly payment** over the life of the loan, showing exactly how much goes toward **interest** and how much reduces the **loan principal**.

How does the interest rate affect the total cost?

The **annual interest rate** is the largest factor in the **total interest paid**. Even a small difference in the rate (e.g., $0.5\%$) can lead to tens of thousands of dollars in difference over a typical $30$-year **mortgage or loan** term.

Why does my monthly payment remain constant?

The **monthly payment** is fixed for a fully amortized **loan payment** (like most mortgages). While the total amount is constant, the ratio of **interest** to **principal** changes over time: more interest is paid early in the term, and more principal is paid later.